Extracting Flow Structures Using Sparse Particles

نویسندگان

  • Alexy Agranovsky
  • Christoph Garth
  • Kenneth I. Joy
چکیده

In recent years, Lagrangian Coherent Structures (LCS) have been characterized using the Finite-Time Lyapunov Exponent, following the advection of a dense set of particles into a corresponding flow field. The large amount of particles needed to sufficiently map a flow field has been a non-trivial computational burden in the application of LCS. By seeding a minimal amount of particles into the flow field, Moving Least Squares, combined with FTLE, will extrapolate the important feature locations at which further refinement is desired. Following the refinement procedure, MLS produces a continuous function reconstruction allowing the characterization of Lagrangian Coherent Structures with a lower number of particles. Through multiple data sets, we show that given a sparse and refined sampling, MLS will reproduce FTLE fields exhibiting a nominal error while maintaining a performance increase when compared to the standard, dense finite difference approach.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coherent structure coloring: identification of coherent structures from sparse data using graph theory

We present a frame-invariant method for detecting coherent structures from Lagrangian flow trajectories that can be sparse in number, as is the case in many fluid mechanics applications of practical interest. The method, based on principles used in graph coloring and spectral graph drawing algorithms, examines a measure of the kinematic dissimilarity of all pairs of fluid trajectories, either m...

متن کامل

Coherent structure colouring: identification of coherent structures from sparse data using graph theory

We present a frame-invariant method for detecting coherent structures from Lagrangian flow trajectories that can be sparse in number, as is the case in many fluid mechanics applications of practical interest. The method, based on principles used in graph colouring and spectral graph drawing algorithms, examines a measure of the kinematic dissimilarity of all pairs of fluid trajectories, measure...

متن کامل

A three-dimensional numerical model to estimate the fall velocity of sediment particles

The fall velocity of sediment particles plays a key role in sediment transport studies. Researchers have attempted to determine the terminal fall velocity, and most of the studies in this regard have been based on experimental, quasi-experimental, and in-situ measurements. The present study aimed to use a numerical model to estimate the fall velocity of a single sediment particle in distilled a...

متن کامل

Visualizing Time-Varying Particle Flows with Diffusion Geometry

The tasks of identifying separation structures and clusters in flow data are fundamental to flow visualization. Significant work has been devoted to these tasks in flow represented by vector fields, but there are unique challenges in addressing these tasks for time-varying particle data. The unstructured nature of particle data, nonuniform and sparse sampling, and the inability to access arbitr...

متن کامل

Quantitative visualization of compressible turbulent shear flows using condensate-enhanced Rayleigh scattering

This paper describes several flow visualization experiments carried out in Mach 3 and Mach 8 turbulent shear flows. The experimental technique was based on laser scattering from particles of H2O or CO2 condensate that form in the wind tunnel nozzle expansion process. The condensate particles vaporize extremely rapidly on entering the relatively hot fluid within a turbulent structure, so that a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011